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We consider a two-dimensional model of noninteracting chains of spinless fermions weakly coupled via a
small interchain hopping and a repulsive interchain interaction. The phase diagram of this model has a sur-
prising feature: an abrupt change in the Fermi surface as the interaction is increased. We study in detail this
metanematic transition and show that the well-known 2%-order Lifshitz transition is the critical end point of
this first-order quantum phase transition. Furthermore, in the vicinity of the end point, the order parameter has
a nonperturbative BCS-type form. We also study a competing crystallization transition in this model and derive
the full phase diagram. This physics can be demonstrated experimentally in dipolar ultracold atomic or mo-
lecular gases. In the presence of a harmonic trap, it manifests itself as a sharp jump in the density profile.
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I. INTRODUCTION

The study of phenomena which deform the Fermi surface
in both electron and cold atom systems has gained much
popularity recently. For example, it has been suggested
that the Fermi-surface shape-changing Pomeranchuk
instability'= may describe experiments in heavy fermions,5-%
quantum hall devices,” and ruthenates,'®!! leading to a
plethora of theoretical papers on the subject.!>0

The Pomeranchuk instability, which breaks rotational
symmetry but no translational symmetries, is essentially a
transition to an electronic nematic phase.”™ An analog in
spin systems has also been studied.”! Incorporating other
electronic analogs of liquid crystal phases into this picture
has been put forward as a general picture of strong
correlations?>?* with evidence for smectic phases being ob-
served experimentally in manganites’* and cuprates.?

These electronic liquid crystal phases also have a strong
relation to dimensional crossover phenomena, where one can
ask the question whether an array of one-dimensional chains
(Luttinger liquids) coupled by a weak interchain hopping 7|
remains strictly one-dimensional (confinement),”® or be-
comes a quasi-one-dimensional (quasi-1D) Fermi liquid (de-
confinement). Indeed, calculation methods such as self-
consistent  perturbation  theory?”?®  and  functional
renormalization®” support the idea that the warped Fermi sur-
face is unstable for sufficiently small ¢, , in principle, there-
fore leading to a Fermi-surface modifying transition at some
finite value of interchain hopping. While the issue of the
Luttinger liquid to Fermi-liquid crossover/transition is not
yet fully resolved, it is possible to ask a much simpler ques-
tion: what happens if an array of one-dimensional Fermi lig-
uids are coupled together? A rather specific example in this
direction was the study of coupled edge states (chiral one-
dimensional Fermi liquids) in superlattices which exhibit in-
teger quantum Hall effect.>
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While such a toy model may not be realistic for any real
materials, advances in laser trapping and cooling technology
have led to the rapidly expanding field of trapped ultracold
atoms, which in the context of condensed-matter physics can
be thought of as a sort of quantum analog simulation of a
bulk system,3'3? with unprecedented control over disorder
and interactions. It was suggested a few years ago®>3 that
exploiting the dipole interaction between cold polar mol-
ecules or highly dipolar atoms allows further control over
effective interactions, in order to build exotic strongly corre-
lated phases. Of particular interest in the present context is
the case when the atoms or molecules are fermions.>* On the
experimental front, there has been much recent experimental
progress toward this goal using highly polar “°K¥Rb
molecules®® and a fermionic isotope of the highly magnetic
atom '®Dy .37 On the theoretical front there has been a flurry
of activity.38-%

Unlike the long-wavelength scattering induced by Fesh-
bach resonances, dipolar interactions have a power-law de-
pendence on the distance between the interacting particles
and a nontrivial dependence on the relative position of the
two particles and orientation of the magnetic dipoles. In the
presence of a strong polarizing field the latter translates into
a strongly anisotropic interaction which leads to a spontane-
ous (though not symmetry-breaking) deformation of the
Fermi surface.®® Indeed depending on the strength of the
dipolar interaction additional, symmetry-breaking (Pomeran-
chuk) Fermi-surface deformations may also occur.*! Even
more interestingly, such polarized dipolar gases can in theory
be combined with optical lattices to generate nontrivial
tailor-made effective Hamiltonians.

In this connection the present authors showed® that a
quasi-1D optical lattice could be used to create a system
whose phase diagram features Fermi liquid, stripe and check-
erboard ground states, as well as a metanematic quantum
phase transition into a state with distorted Fermi surface. The
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model of Ref. 39 features chains within which there are no
interactions, achieved by the alignment of the polarizing field
at the “magic angle” to the tube direction. For this particular
orientation of the field, the interactions between particles on
different chains are purely repulsive. An experimental real-
ization of this model would thus furnish an example of the
coupled one-dimensional Fermi liquids mentioned above. In-
terestingly, the spontaneous Fermi-surface distortion encoun-
tered in this model corresponds also to an interaction-
induced change in dimensionality, from quasi-1D (open
Fermi surface) to fully two-dimensional (closed Fermi-
surface) behavior. An important property of this model is that
these various transitions can all happen in different, well
separated, regions of phase space. Thus, each of the phase
transitions can be studied independently without its proper-
ties being masked by the other ones.

More recently other authors have studied a closely related
model, featuring continuum tubes rather than discrete
chains.®? In this case only the strictly 1D limit was consid-
ered but on the other hand the polarizing field was allowed to
point in any direction. This leads to a rich variety of effective
interactions and a correspondingly rich phase diagram: in
addition to density-wave (DW) and metanematic phases, dif-
ferent superfluid ground states are expected.

The present work extends the theories in Refs. 39 and 40
by considering finite temperature phase transitions in addi-
tion to the quantum phase transitions discussed to date. We
also develop a fully analytic theory of the metanematic tran-
sition in the neighborhood of its critical end point.

The Hamiltonian of the model that we analyze in detail
consists of spinless fermions hopping along parallel chains
(labeled by n), with a weak hopping and an interaction be-
tween nearest-neighbor chains,

H= 2 {_ t\l(c;“;nciﬂ,n + Cj;l,nci,n)

in
T T
- ti(c;,nci,m-l + Ci,n+1ci,n) + Vpi,npi,n+1}’ (1)

where the density

_
pi,n - Ci,nci,n' (2)

The plan for the rest of the paper is as follows: in Sec. II
we will study the metanematic transition in full detail, ex-
plaining its origins and its link to the Lifshitz transition. In
Sec. III we will look at the other competing instability of the
model to a crystalline phase. The complete physical picture
is presented in Sec. IV. We finish with a discussion of both
the specific properties of this model, and how these may be
generalized to a more realistic microscopic model in
condensed-matter systems.

II. METANEMATIC TRANSITION
We first consider a phase transition closely related to the
Lifshitz transition.*

A. Self-energy in self-consistent Hartree-Fock approximation

We study how the interactions renormalize the spectrum
within the diagrammatic perturbation-theory approach. To do
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this, we will introduce the Matsubara Green’s function
T A
Gk,iw,) = J dre' " ((Tei(T)e)), (3)
0

where T, is the (imaginary) time-ordering operator, ¢ (7) is
the annihilation operator in the Heisenberg representation
evolving in imaginary time, and ({---)) is the thermal aver-
age. In the above expression and in what follows we have set
Boltzmann’s constant kz=1 and Planck’s constant divided by
24, i=1. Within the diagrammatic perturbation theory, the
Green’s function can be built up from the noninteracting
Green’s functions

. 1
Go(K,iw,) = m

4)
Here,

&(k) =—2¢ cos k, — 2t cos ky,— p (5)
is the bare dispersion. The full Green’s function is then given
by a Dyson series to be

GKk,iw,) = !
O = Eo(K) — S (K. iw,)

(6)

where 2(K,iw,) is the self-energy.
We will calculate the self-energy to lowest order, which
corresponds to the Hartree and the Fock terms,

—_—— = g + i’ ; ‘.' 'z
The first diagram is the Hartree term. It has no depen-
dence on k,,k, or iw, and can be trivially evaluated to give

S, =-VN/Q, (7)

where N is the number of particles and () is the volume of
the system. This term simply renormalizes the Fermi energy
and will be ignored for now.

The second (Fock) term has more structure. The diagram
corresponds to the expression

d
Sp(k,w) = Tg f ﬁGO(q’ien)V(k -q), (8)

where we have introduced the Fourier transform of the inter-
action

V(p) =2V cos(p,). 9)

Now, the Matsubara summation can be performed to give

. 1
T2 Go(q.i€,) = T3 o =) (10)

L€,

where n is the Fermi function (with respect to the noninter-
acting part of the Hamiltonian). We see first that X5 is inde-
pendent of energy and is given by
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S p(kyky) =2V n(q..qy)cos(k,—q,).  (11)

(2 )2
Note that 2 p(k,,k,)=2f(k,) so the Hartree-Fock self-energy
does not depend on k,. ThlS is a direct consequence of the
interaction potential being k, independent: V(k,,k,)=V(k,)
and is a specific feature of our particular model. In the ab-
sence of any term breaking the symmetry k,— —k, (which
would give rise to spontaneous currents) we have n(g,.q,)

=n(qy,=q,), 0
q.dq,

2 p(ky) =2V cos k, Py
: ar

—n(g.qy)cos(q,).  (12)

Now, from Eq. (6), we see that the role of an energy-
independent self-energy is simply to renormalize the bare
energy spectrum,

&(k) = &(k) + 2(k). (13)
Specifically, the effect of this diagram is to renormalize the
transverse hopping to

=t 4V 2n(qx,q))COS(qv) (14)

(2 )
To make this Hartree-Fock theory self-consistent, we need to
take n(g,,q,) to be the Fermi function with the renormalized
spectrum

1
(@) =g (15)
where
&q) = - 21 cos g, =21 cos g, — p. (16)

For a variational derivation of these self-consistency equa-
tions see Ref. 39.

While the self-consistent expression for the renormalized
transverse hopping, Eq. (14) looks innocent enough, its so-
lution has a number of surprising features for the anisotropic
tight-binding model spectrum in question. Our strategy for
the rest of this section proceeds in two steps. First, we will
analyze the solutions of Eq. (14) at zero temperature, where
we will discover that far from evolving smoothly, the renor-
malized hopping undergoes a first-order jump at some criti-
cal V. We refer to this Fermi-surface shape changing transi-
tion as the metanematic transition, and we will examine its
properties showing that it is the finite interaction version of
the well-known Lifshitz transition, which as we shall see is
its quantum critical end point.

It is in order here to clarify that the term metanematic
transition is used in direct analogy with the term metamag-
netic transition, extensively used in recent years.*’*® In the
first case the transition is caused by the external tuning of the
bare tunneling strength whereas in the second case the tran-
sition (or crossover) is caused by the tuning of an external
magnetic field. Thus in both cases we are dealing with the
nonsymmetry-breaking version of a symmetry-breaking in-
stability (the Pomeranchuk instability in one case and ferro-
magnetism in the other) in the form of a first-order transition
tuned by a symmetry-breaking field (namely, lattice aniso-
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FIG. 1. (Color online) Left panel: the dashed curve shows the
saddle point of Eq. (14) for a typical value of u=0 and 7, /£,=0.1.
There is an unstable region where there are three solutions of this
equation. To determine the true ground-state solution, we take cuts
through this and look at the energy (right panel) for values of
Viy=4.2, 4.4, 4.6, 4.8, and 5.0 top to bottom. The local minima
correspond to the saddle-point solution while the true minima allow
us to draw on the left the true renormalization of * (solid line in
first panel), which has a first-order jump at some critical V.

tropy and an externally applied magnetic field, respectively).

In the second step, we will proceed to finite temperature,
where we will see that this line of first-order transitions ends
in a critical end point at a certain 7. We will also show that
this transition is a density-of-states related effect and show
why we expect it to be robust against higher orders in per-
turbation theory.

B. Metanematic transition at zero temperature

In Fig. 1 we plot a numerical solution of Eq. (14). It is
clearly seen that there is a first-order jump in the renormal-
ized hopping r* at some value of V. In order to find the
location of this jump, the metanematic transition, we must
find which solution is stable in the regime where there are
three possible solutions. This can be done by computing and
analyzing the total free energy of the system.

The noninteracting and interacting parts of the free energy

are
= [ L 00m00 -7 Lot
(2m) (2m)
+[1=n(k)]In[1 -n(k)]},
=3 [ 5[ Lhvinaon kv a] 1)
with the total free energy obtained by adding them together
(F)=(Fo) +(Fy). (18)

It is worthwhile noting that the equation for the renormaliza-
tion of the transverse hopping Eq. (14) is exactly the solution
of ;’t—f=0. We defer a discussion of higher order terms in the

interaction to Sec. V.
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FIG. 2. (Color online) The renormalized hopping as a function
of the interaction strength for u=0.0 (left) and u=-1.5# (right),
and various values of the bare interchain hopping ¢, , which can be
read off the value of #; when V=0. The lower panels also show the
size of the jump Af’ as a function of the position V at which it takes
place.

In the right panel of Fig. 1 we plot how the total-energy
changes with t* when every other parameter remains fixed.
For V below the transition, there is a single energy minimum.
Above the lower transition line, a local minimum at higher ¢*
appears (the middle line in the three-valued parts of Fig. 1 is
always a local maximum). Between the two transition lines,
this local minimum becomes lower than the previous
minimum—and there is a true first-order jump in the value of
t*. Above the upper critical line, the local minimum at lower
{* vanishes.

We are now in a position to calculate numerically the
energy at its minima and find the lowest one. This allows us
to determine and show in Fig. 2 where the actual transition
takes place. In addition, we plot the size of the jump. Note
that the jump diminishes as the value of V where it occurs
tends to 0, with a quantum critical end point at V=0.

While V is the natural parameter to vary in order to un-
derstand the nature of the transition, much insight can be
gained by plotting the renormalized ¢* as a function of the
chemical potential u for fixed bare interchain hopping ¢, and
interaction strength V (in addition, in a cold atom realization
it will be easier to tune ¢, than V). This is done in Fig. 3.
Note the very pronounced dependence of ¢ on w near the
transition, even for V=¢, in spite of the first-order jump itself
being very small for such small value of the interaction
strength.

We can now plot the actual zero-temperature phase dia-
gram, showing the single line of first-order phase transitions.
This is shown in Fig. 4. The 2 and 1/2-order Lifshitz
transition*® can be regarded as the quantum critical end point
of our metanematic first-order transition, which we will dis-
cuss in more detail in the next section.

C. A theory of the quantum phase transition

So far, all of the results have been obtained by numerical
evaluation of the integrals. We now go one step further and
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FIG. 3. (Color online) The variation in the renormalized hop-
ping 7* with w at a fixed bare hopping t(f)zo.llu. The different lines
are for different interaction strengths, from bottom to top, V=0-4
in units of #.

look at an analytic solution around the quantum critical end
point (the Lifshitz transition), where the critical V.— 0. This
occurs at the point where the (bare) Fermi surface just
touches the edge of the Brillouin zone, ¢ =I%Pr =t—u/2. We
write x=(5 ="/t and xo=(r, —t%") /1, noting that in
this notation, x, will always be negative. By a direct expan-
sion for small x of the energy, Eq. (18), at zero temperature,
we find (we have relegated the details of the derivation to the
Appendix)

1
Ex x2[1n|x| - 5] - 2x[x = xo — aV]In|x| = Vbx? In?|x|,
(19)

where a and b are (positive) constants, depending on the
chemical potential u, and we have ignored any terms inde-

[V - ]
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FIG. 4. (Color online) The upper panel shows the critical inter-
action strength V. as a function of the bare interchain hopping 7,
for four different values of the chemical potential (from top to bot-
tom w/1,=0.0,-0.5,-1.0,—1.5). The dashed lines in each of these
cases bound the region where the energy landscape has more than
one local minimum. The lower panel shows the size of the jump
A" as the lines in the upper panel are crossed.
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pendent of x. The logarithms reflect the presence of logarith-
mic singularities in the density of states (van Hove singulari-
ties) at the Fermi level when x=0.*C We note that a similar
expansion emphasizing the nonanalyticities around the quan-
tum critical end point has been made in a related two-
dimensional model,*® where interactions also drive the Lif-
shitz transition first order. The energy function, Eq. (19), can
now be minimized with respect to x,

% o 2[In|x| + 1][= (x — x) + V(a — bx In|x|)].  (20)

The turning points %:O at x= = 1/e [when the first bracket
in Eq. (20) becomes zero] are unphysical and an artifact of
our small x expansion Eq. (19). The remaining local minima
of 19 occur when

x—xo=V[a - bx In|x[]. (21)

It is worthwhile noting that when V=0, the only solution of
this equation is x=x,, as it must be, and in fact it is this
condition that strongly constrained the form of the energy
functional, Eq. (19). Now, at finite V, we know that the me-
tanematic transition occurs when the energy of the two local
minima becomes equal so that the value of x which mini-
mizes E jumps from one minima to the other. This occurs at
the point xo+aV=0 or

V.==xy/a, (22)

where the energy functional Eq. (19) becomes an even func-
tion of x. This linear relation between the critical V and the
distance from the quantum phase transition (QPT) agrees
perfectly with the numerical results in Fig. 4. Now, substi-
tuting the value of V, into Eq. (21) gives us the solution
x=*exp{-1/bV,} or

Af} =2e71PVe, (23)

This nonperturbative expression for the jump in the renor-
malized transverse hopping, which acts as an effective “order
parameter,” again agrees well with the numerics in Figs. 2
and 4. We note that the expression is of the same form as the
well-known one giving the finite binding energy of a Cooper
pair in the presence of and arbitrarily weak attractive inter-
action. Its meaning is that the 2- and 1/2-order Lifshitz tran-
sition turns first order under the effect of interactions in a
nonanalytic way, making it an idealization never truly real-
ized in any real (and therefore, interacting) system. Note that
recent experimental evidence in favor of a Lifshitz phase
transition in Na,CoO, seems to suggest that the transition is
indeed of first order in this material.®® Other interaction-
induced nonsymmetry-breaking phase transitions involving a
change in topology of the Fermi surface have been discussed
in Refs. 12, 49, 51, and 52.

D. Finite temperature

In this section we study the effects of temperature on the
metanematic transition. The equation for the renormalization
of ¢, is the same as for the zero-temperature case but with
the zero-temperature distribution replaced by the finite tem-
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FIG. 5. (Color online) The solution of the saddle point Eq. (14),
at finite temperature (from outside to inside T/g
=0.0,0.1,0.2,0.3,0.4,0.5) for a typical value of u=0 and 7, /¢,
=0.05. As temperature is raised, the size of the region with more
than one local minima decreases, and eventually disappears alto-
gether when we reach 7., the second-order critical end point of the
metanematic transition.

perature Fermi distribution. In this case we perform the in-
tegrations numerically. A representative cross section of the
results is plotted in Fig. 5. As expected, by increasing tem-
perature, the size of the first-order jump gets smaller, until it
finally vanishes at a second-order critical point at some
(Tc > Vc) .

We find the position of the jump within this unstable re-
gion by free-energy considerations identical to the zero-
temperature case. This is plotted in Fig. 6 as a function of
temperature T for different values of u and the bare hopping
t,. We note that unlike the quantum case, the classical

0.8 ——— ‘ ‘

v/

FIG. 6. (Color online) The critical line in the V-T plane, for an
example value of chemical potential u=0. From right to left, the
bare hoppings are 7, /£=0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, and 0.55. The dashed lines enclose the region of
interaction strengths V for which the free energy has more than one
local minimum. Inset: the size of the jump Atj/ t, as we cross the
critical line, as a function of temperature 7. From outside to inside,
the values of 7, /£,=0.0, 0.1, and 0.2.
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second-order phase transition (where the jump vanishes at
finite 7) has a regular free-energy expansion as the van Hove
logarithms are smoothed over by temperature—Ileading to
the standard analytic mean-field behavior with the expected
threshold temperature dependence,

Ar| = (T.=1)'"?, (24)
which is shown as the inset to Fig. 6.
II1. DENSITY-WAVE TRANSITION

The model, Eq. (1) also has an instability to a DW state,
which has broken translational symmetry characterized by a
nonuniform density,

pow(X.y) = po+ A cos(2kpx + my). (25)

This arises from the quasi-one-dimensional nature of the
model, which has an almost nested Fermi surface (which
becomes perfectly nested in the limit #, —0 or u=0). While
the physics of this transition is well established, it is impor-
tant to investigate it in more detail in this case, in order to
determine the regions in parameter space where the new me-
tanematic transition is not eclipsed by this DW transition.

We will estimate the transition line between the DW state
and the “normal” phase via the random phase approximation
(RPA). We note that this approach is valid only for determin-
ing where the DW instability takes place and not to describe
the ordered state beyond the instability line. For that, one
could add a translational symmetry-breaking mean field and
redo the Hartree-Fock theory. This would have the advantage
of furnishing a description of the symmetry broken phase as
well. However, the presence of a DW incommensurate with
the lattice creates many calculational difficulties, and the in-
stability condition obtained in this way is equivalent to that
obtained within the RPA. Furthermore, the use of RPA em-
phasizes the two-particle nature of the DW instability, in
contrast to the one-particle nature of the metanematic (MN)
transition; thus each is controlled by different properties of
the Fermi surface (see Sec. V).

We start with the density-density correlation functions in
the Matsubara time representation,

X(k,7) = i(Tp(k, 7)p"(k,0))). (26)

In the noninteracting case, this is given by the particle-
hole bubble,

dq de
Xk, w) =— —f—G°k+ €+ 0)G'(q,€).
(k, ) on?) 2mi (k+q,e+w)G(q.€)
(27)
Treating the interactions via the RPA then gives us
XO(k,
X(k, ) = (k, ) (28)

1+ V(k)X(k,0)
The momentum dependent interaction V(k,) is given by
V(ky) =2V cos k. (29)

In particular, setting k,= = a7, this is negative, and could lead
to an instability. In fact, the Stoner criterion is exactly look-
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ing for poles in response functions at zero frequency, w=0.
Looking at Eq. (28), we see that this happens when

2VXO(K,w=0)=1. (30)

The imaginary part of X, vanishes at w=0. Taking the real
part gives the Lindhard formula for density-density response,

dq n(q)-nk+q)
2m)o-ék+q)+E&q)’

where n(Kk) is the Fermi function. We can include the effects
of the Hartree-Fock self-energy in this expression by taking
&(K) to be the renormalized energy spectrum, given by Egs.
(14) and (16), rather than the bare tight-binding spectrum.
The most important point is that so long as the renormalized
interchain hopping remains small, X,(k,0) is only very
weakly dependent on k.

In general, the Lindhard function (and hence the Stoner
criterion for the phase boundary) must be evaluated numeri-
cally, however there are some limits where we can gain in-
sight analytically. Let us consider first the case where the
renormalized interchain hopping t; remains zero. Therefore,
near the Fermi surface, the nesting condition é(k+Q)=
—&(k) is satisfied for the nesting vector Q=(2ky, ). This
gives

RX,(k,w) = f ( 31)

Xo(Q=0) ~ p(eF)ln(f—TF), (32)

where p(ep) is the density of states at the Fermi surface and
€-~21"+ u is the chemical potential as measured from the
bottom of the band. Thus the Lindhard function has a loga-
rithmic divergence at wave vector Q at zero frequency and
zero temperature. This means that the ground state is indeed
a density wave for any finite interaction strength, with a criti-
cal temperature estimated from the Stoner criterion,

T, ~ epe” PPV, (33)

This means that with zero interchain hopping, the metane-
matic transition of the previous section will never be seen, as
it will always be preempted by an ordering transition.

For finite (but small) interchain hopping, the perfect nest-
ing is lifted (so long as we stay away from the particle-hole
symmetric point ©=0) and there is no longer a singularity,

Xy(Q,0=0,T=0) ~ p(eF)ln(:{>, (34)

1

meaning that a finite interaction
1

€r
P(GF)IH(?)

L

v, ~ (35)

must be obtained before the instability to the density-wave
state occurs. This gives us a region of parameter space where
as the interaction is turned up, the metanematic jump takes
place before the DW transition, so the metanematic transition
can be seen.

To go beyond these simple limits requires a numerical
evaluation of the Lindhard function. In the next section, we
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FIG. 7. The first- and second-order vertex corrections.

will plot the phase boundary of the DW transition alongside
the phase boundary of the metanematic transition allowing
the region in-phase space where the metanematic transition
“wins” to be clearly seen. Before going on to this however,
we will take a look at corrections to the RPA, which in our
particular model will be proven to be small. We will then
look at a strong-coupling expansion which will complement
the weak-coupling perturbative analysis in this section, be-
fore finally giving a completely different derivation of the
DW instability for the special case of 7, =0.

A. Vertex corrections

In this section we go beyond the RPA and study the vertex
corrections (note the fact that RPA becomes exact for a
strictly 1D linear spectrum®?). First we examine the case
where the renormalized hopping remains zero, so the Green’s
functions are independent of transverse momentum, and the
interaction lines are independent of the longitudinal momen-
tum.

The first-order correction is shown in Fig. 7(a). We note
that the particle lines are dressed by the Hartree-Fock self-
energy, see Eq. (7). This takes care of all first-order vertex
corrections except for that represented by the diagram (a),
which is given by

d d
why )= f (m)zj > (z: f 20 X Ok,

+q.6+0)Gk,+q,+p.€ + 6+ )

X Go(qx’ EI)GO(Qx +pn€t 62) V(P}) =0.
(36)

The result is zero due to the integration over transverse mo-
mentum, [dp,V(p,)=0. We emphasize that this is a special
feature of the model under consideration.

The second-order diagrams are also shown in Fig. 7. Dia-
grams (b)—(e) will all be zero for the same reason as the
first-order diagram. Diagram (f) is therefore the first correc-
tion to the RPA

d d
Xk ) = J B )ZJ elf sz 2m X

+q.6+0)G(k,+q,+p.€+6
+ w)GO(qx’ E])GO(C]X tpn€+ 62)X0(py’ 62)
X[V(p,)T*. (37)
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While this is nonzero, note first that the entire expression
is independent of k,, it is smaller than X° by a factor (V/t,)?
and most importantly, does not have a divergence at k,
=2k (basically the divergence is cured by the extra integra-
tions). In the region of interest k,=~2ky, w=0, it can there-
fore be considered as a small perturbation to X° within the
RPA and thus does not have to be taken into account to get
the essential physics correct.

All of this is strictly true for ¢ | =0. Nevertheless, it is easy
to check that when ¢, # 0, these vertex corrections form a
power series in ¢, /t;. Therefore as long as the renormalized
value of ¢, remains small, the RPA is a very good approxi-
mation. Similar features have been seen, e.g., in a model of
stacked edge states in the case of the integer quantum Hall
effect.’”

B. Strong-coupling limit

While the smallness of the vertex corrections means that
RPA is formally a very good approximation for the model in
question, it still remains a weak-coupling perturbation ex-
pansion. We can complement these results by showing that in
the strong-coupling limit, the ground state is indeed a
(2kg, ) density wave. This demonstrates the qualitative cor-
rectness of the phase diagram we will present in the next
section, even if the RPA does not estimate with high preci-
sion the position of the transition line for large interaction
strengths.

We can proceed by first taking the kinetic part of Hamil-
tonian (1) to zero #;=¢, =0. In this limit, we can rewrite the
Hamiltonian as

HO = VZ pi,npi,n+1

in

1
=EVE [(pi + Piye1) = (Pip— pi,n+1)2]’ (38)
in

where we have used the property piz,n=pi,n. From the above
form of the Hamiltonian it becomes obvious that a uniform
distribution of fermions over the chains is not energetically
favorable. To illustrate this, consider the half-filled case,
where half of the sites are occupied in the system with M
chains each one having N, sites, therefore total fermions N
=MN,_/2. If the real-space pattern is such that every column
(perpendicular to chains) has every second site occupied then
the total energy is zero. Similarly this result stays the same if
we choose any particular way how to “combine” or “lock”
these columns and form the chains. Therefore there is a mac-
roscopic degeneracy of 2Ve.

It is interesting to map the problem onto an Ising Hamil-
tonian by allowing the values of a pseudospin S to be +1 in
the presence of a fermion at a given lattice site and —1 in the
absence of it. Then we can transform the Hamiltonian to the
two-dimensional antiferromagnetic Ising with coupling con-
stant only in one direction. This can be done by the transfor-
mations: S;,=2p;,—1 and p;,=1/2(S;,+1). The Hamil-
tonian then maps onto
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\%4
= ZE SinSinss (39)

which has an antiferromagnetic ground state in rows vertical
to chains and therefore the same degeneracy as shown above.

If we turn on the kinetic-energy part we observe that to
first order in perturbation theory, we cannot have nonzero
matrix elements among the degenerate ground-state mani-

fold; then second-order processes of order % must be taken
into account. Therefore the degeneracy is lifted by any in-
finitesimal amount of kinetic energy (tunneling strength)
which, to second order in perturbation theory, selects the
checkerboard configuration. It is a version of the “order by
disorder” phenomenon; order is developed by increasing a
quantity associated to disorder (kinetic energy). To second

order in the tunneling strength the energy gain is

2
1
— il N il
Hk - 2 <2VCi,nci+l,nci+1,nci,n (40)
in
t2
1o n
+ ;ci',nci,nﬂci‘,nﬂci,n (41)

and it favors the checkerboard pattern. This is precisely the
DW (2kg, ) that was found using RPA calculations. In the
pseudospin language, the Ising Hamiltonian acquires an ad-
ditional term which takes into account the second-order tun-

neling,
1% ti) ( i )
H= —+ =SS+ = |Si,Si . (42
% |:(4 % i,nin+1 vV i,nPi+1l,n ( )

At less than half filling (the physics at greater than half
filling will be identical through a particle-hole transforma-
tion), the ground-state degeneracy in the absence of kinetic
energy is even worse as there exist extra unoccupied sites
which could occur anywhere within the previous manifold of
states. However, now first-order processes in hopping are
allowed. Including the hopping along the chain to first order,
one can think of the ground state as being stacks of particles
as delocalized as possible but avoiding contact with other
particles above or below. For example, at 1/4 filling, each
particle will be delocalized over two sites in the chains, these
stacks then forming an identical problem to the single-site
columns in the half-filled case. Of course at incommensurate
fillings, the particles will be delocalized over a fractional
number of sites—but the ultimate physics will remain the
same. As before, finally taking second-order processes into
account removes the mass degeneracy and isolates the “crys-
talline” phase as the unique ground state. The precise deter-
mination of the possible favored ground-state configurations
beyond this intuitive argument requires more detailed com-
putational work which is beyond the scope of the present
work and the illustrated physics.

C. Limit of zero interchain hopping

In the model [Eq. (1)] for the specific case 7, =0, we can
study the model in a completely different way, as the nonin-
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teracting part is now strictly one dimensional. This allows us
to single out the most important components of the interac-
tion and look at their flow under the renormalization-group
(RG) rescaling of the system.>*

On each of the chains, one can make the chiral decompo-
sition,

Cin— e *F L, (x) + PR (x), (43)

where x=ai, a being the lattice spacing, n indicates the chain
number, and L and R are slowly varying fields near the left
and right Fermi points, respectively. By linearizing the spec-
trum around the two Fermi points, the kinetic part of the
Hamiltonian becomes

Ho=—ivp2, f dx[R}(x)d,R,(x) — Li(x)d,L,(x)], (44)

where vy is the (bare) Fermi velocity, and the interaction
term becomes

Hy=> J dx{g) umRL, LR, + 82 mRIR,LL,}, (45)

where g, ,, is the forward scattering and g, ,,, is the back
scattering between particles on chains n and m. In terms of
the bare parameters of the Hamiltonian, g ,,,=g,,,=V for
nm nearest neighbors and zero otherwise—however under
RG, effective further neighbor scattering terms are gener-
ated, so we must retain them in the Hamiltonian. We note
that there is also interchain interactions involving only right
(or left) moving particles—however these are known not to
affect the RG flow>* so we will not consider them.

If only the forward-scattering (g,) terms were present, this
model can be exactly solved by the Bosonization
technique.*’ There is a transition to a smectic phase’ at large
V~uvp. As this transition will only be visible in a slightly
perturbed version of the model described by Eq. (1) with
longer range interactions®® which we have previously dis-
cussed, we will concentrate here on the effect of the g; back-
scattering terms.

While such models can still be bosonized in the presence
of interchain backscattering (see, e.g., Ref. 55), the resulting
bosonic Hamiltonian is nonlinear and not easy to deal with.
We therefore elect to remain in the fermionic representation,
where the one-loop RG equations can be easily derived,

dg,
d}”m =- 2gl,nm(g2,nm - gz,nn) - 2 gl,nigl,in’
i
ng, ¥ 2
dlnﬂ =_g1,nm’ (46)

where /=-In A, with A being the ultraviolet cutoff of the
theory. These are very similar (although not identical) to the
related problem of coupled spin-full chains.’%-’

Following Ref. 57, we can now see that while the bare
couplings may be nearest neighbors only, the RG due to the
sum in Eq. (46) generates couplings between all pairs of
chains. Furthermore, due to this sum, the backscattering am-
plitudes renormalize much quicker than their forward-
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FIG. 8. (Color online) Plot of the density-wave and metanematic
critical surfaces for w/fy=—1.5. The plots are qualitatively similar
for other values of u.

scattering counterparts,’’ so to leading order one can neglect
the renormalization of g,, and deal with the far simpler equa-
tion,

g1 um
#:_;gl,nigl,in' (47)

We note that effects of g, were dealt with in Ref. 58 which
concludes that the only interesting effects of g, come when
one has a bare intrachain backscattering amplitude, some-
thing we neither have by construction of our interaction nor
can have due to the spinless nature of the model. We there-
fore will deal only with Eq. (47), which are easily separated
by a Fourier transform

1w .
gi(g)= ;/2 elmaLg, (48)

which gives us

dg(q,) _

P ~g1(q.). (49)

Hence any parts of g,(¢,) which begin negative renormalize
to strong coupling. Now, the bare backscattering amplitude
from nearest neighbors is

g"%(g,) =2V cos(q,), (50)

so under RG, the component of the interaction which hits
strong-coupling first (after which the RG must be stopped) is
the g, = part of the backscattering amplitude, or in other
words, the (2kg, 7r) component of the interaction. This signi-
fies the formation of a (2kp, m) DW (Refs. 57 and 59) as we
expected.

IV. FULL PHASE DIAGRAM AND EFFECT OF TRAPPING
POTENTIAL

A. Full phase diagram

We now can draw a complete phase diagram of the model,
including both possible instabilities—which is plotted in Fig.
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8 for a typical value of wu/#;=-1.5. The plots are qualitatively
similar for other values of the chemical potential. From the
plot, it may seem that the instability to a crystalline pattern
dwarfs the metanematic instability, however it is also clear
that there will always be a region in-phase space where the
metanematic transition can be observed. Furthermore, we
should add that while in our simple model, the density wave
is usually the dominant instability, the two transitions come
from fundamentally different physics: the metanematic tran-
sition from the van Hove singularity in the density of states
and the density-wave transition from a near-nested Fermi
surface. Therefore, destroying the nesting by for example
adding a next-nearest-neighbor hopping term; or frustrating
the interaction will both lead to a suppressed tendency to
enter the ' phase while barely affecting the metanematic one.
However, the best way to enhance the MN phase relative to
the DW is open for further investigation.

As noted in Sec. I the separation in-phase space between
the MN and DW phase transitions is one of the salient fea-
tures of this particular model, with the phase diagram in Fig.
8 showing clearly the existence of such regions of phase
space where either one or the other instability takes place.
On the other hand, in those other regions where the two
different instabilities become too close together, our calcula-
tional techniques break down, as the mutual competition be-
tween each of them must be carefully taken into account. We
discuss this point further in Sec. V below. For the time being
we simply must bear in mind that the plotted phase diagram
is less reliable around the latter regions.

B. Density profiles in a trapping potential

Having discussed the properties of transitions in a general
context, we now turn specifically to one potential realization
of the model: dipolar fermions in an anisotropic optical
lattice. In a cold atoms experiment, in addition to the opti-
cal lattice, there is also a harmonic trapping potential,

V(r) = ar?, (51)

where « is some constant dependent on the experimental
setup. Within the local-density approximation (LDA), this
can be theoretically approximated as an inhomogenous
chemical potential

Meff(’”)=M—V(’”)=M—a’”2~ (52)

From the previous formulas, we can therefore plot the den-
sity profile, and profile of renormalized hopping within the
trap, which is shown in Fig. 9. We note that in this figure, we
show only the metanematic transition and not any possible
DW phases: in fact for the rather strong-interaction strengths
shown in the figure the DW phase will have a dominant
presence in the phase diagram. However on reducing V, the
DW will go away, leaving only the metanematic jump
shown. This jump will be present for any interaction strength
V, although for small V, the size of the jump becomes expo-
nentially small, which is why it is artificially enhanced in the
figure, by plotting the profile for large values of V (see also
the discussion in the previous section about the relation be-
tween the DW and MN transitions).
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FIG. 9. (Color online) The local density as a function of position
of our model within a harmonic trap (treated within the LDA). The
parameters are adjusted so that the density in the middle of the trap
is exactly half filled, and the bare transverse hopping t(f)=0.1. We
note that the variation in the effective chemical potential across the
trap makes the metanematic transition visible as a jump in the den-
sity, with no special tuning of parameters. Inset: the variation in the
order parameter fj_ against position in the trap.

The interesting feature of these steps in the density profile
is that they signal the separation of two compressible
phases6° and does not represent the more common
compressible/incompressible boundary. The only difference
between the phases on either side of the jump is the topology
of the Fermi surface: on one side it is closed while on the
other it is open. This difference is, however, possible to mea-
sure in optical lattice experiments by direct imaging of the
Fermi surface.®!6?

V. DISCUSSION

We have examined in detail two different phase transi-
tions associated with quantum liquid crystal phases of matter,
which appear in the same physically realizable model. The
first, the metanematic transition which is nonsymmetry
breaking but has strong ties to both the Pomeranchuk and the
Lifshitz transitions while the second crystallization transition
is a standard symmetry-breaking transition. We have shown
that both transitions may be found in a simple anisotropic
lattice model of spinless fermions, which may be realized
with ultracold dipolar atoms in an optical lattice.

The Pomeranchuk mechanism of spontaneous deforma-
tion of the Fermi surface is a straightforward generalization
of the Stoner mechanism of itinerant ferromagnetism' (very
much in the same way as unconventional pairing generalizes
s-wave pairing in the BCS theory of superconductors). This
begs the question why, unlike itinerant ferromagnetism,
which is ubiquitous, there is so little evidence of Pomeran-
chuk and other spontaneous deformations of the Fermi sur-
face, such as the metanematic transition discussed here, in
real systems (in contrast, many unconventional supercon-
ductors exist in addition to those conforming to the original
form of BCS theory). One insight is offered by the mean-
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field analysis of central interactions leading to Pomeranchuk
instabilities.!> It reveals that unlike the Stoner instability,
which may be induced by a contact interaction, its higher
angular momentum generalizations, namely, the Pomeran-
chuk instabilities, require a repulsive interaction potential
V(r) with nontrivial features at a characteristic distance r
>r,, where r is the average distance between particles. Un-
der such conditions other instabilities, involving the breaking
of translation symmetry, are also expected. In particular,
there is a competition between Fermi-surface deformations
and more conventional, density-wave instabilities leading to
smectic order (stripes) or crystallization. A similar situation
is found in mean-field theories of Fermi-surface deforma-
tions on the square lattice:*®3 it is found that repulsion be-
tween fermions sitting on nearest-neighbor sites can lead to
Pomeranchuk deformations of the Fermi surface but that this
tendency is strongest near half filling where other, real-space
instabilities are also enhanced. The question of which type of
order prevails in this case is hard to answer. In general, it will
be model specific and require a quantitative assessment of
the role of fluctuations going beyond mean-field theories. It
is worth mentioning in passing, that recently, there was a
rigorous study of the effects of van Hove points on the prop-
erties of interacting fermionic systems, using functional
renormalization-group (FRG) techniques.®* There it was
shown that the logarithmic singularity in the density of states
caused by the zero of the bare Fermi velocity gives rise to
new marginally relevant terms in the renormalization-group
equations and leads to singularities in the analytic properties
of electronic self-energies.

In the present work we have considered an anisotropic
square lattice with anisotropic interactions and we have
found that in this case the situation is much more clear-cut.
As discussed above, the density-wave and metanematic in-
stabilities are driven by two separate aspects of the band
structure, namely, nesting and the van Hove singularity in the
density of states, respectively. As is well known, these two
features coincide for a square lattice but as soon as ¢, #¢
they diverge: while perfect nesting still occurs at exactly half
filling, w=0, the singularity splits into two separate features
at u=*2|t—t,|. As a result of this, for the anisotropic
model considered here there is a broad region of the phase
diagram where metanematic order clearly prevails over the
tendency to form a density wave.

This separation of features also partially justifies the use
of the Hartree-Fock approximation—far enough away from
the density-wave instability, the susceptibility of the model
remains small, so the interaction is only weakly renormalized
by higher order terms, leading to only small corrections to
the Hartree-Fock results. As the two different instabilities
come closer together in-phase space (as would always hap-
pen near the Pomeranchuk instability in lattice systems), the
interplay between the FS-deforming transition and the crys-
talline transition must also be considered, for example, using
the fluctuation-exchange approximation (FLEX).% A closely
related competition between spin-density-wave formation
and superconductivity has recently been studied in the con-
text of the pnictide superconductors.®® Such a study however
is beyond the scope of the present work.

We also note that even far from the crystalline transition,
the Hartree-Fock approximation neglects all fluctuations, and
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it is natural to ask what role such fluctuations may play in the
metanematic transition. We expect that as this transition is
driven by a van Hove singularity in the density of states,
fluctuations which can be described by Fermi-liquid physics
will not qualitatively change the picture. The reason is that
so long as the energy distribution function at 7=0 has a jump
at the Fermi energy, the same logarithmic divergences as we
have considered will appear in the perturbation series, which
will lead to the same physics, and the effect of the fluctua-
tions will be limited to the renormalization of some param-
eters.

Interestingly, this separation of features due to anisotropy
is somewhat reminiscent of the cuprate high-temperature su-
perconductors, where the existence of stripe order is well
established in tetragonal La;44Nd4Sry,CuO, and
La, g7;5Bag 15sCu0,4 (Ref. 67 and references therein) while
evidence is accumulating of a nematic state in YBa,Cu;Og,
(YBCO).%%° The CuO chains present in the latter material
constitute a very strong orthorhombic perturbation. One way
of interpreting the date is that the resulting breaking of the
D,h symmetry of the crystal lattice drives away a density-
wave instability that competes with the nematic order, allow-
ing the latter to prevail in the case of YBCO.

We finally note that in the general case when interactions
between next-nearest neighbors on different chains become
important the density-wave instability described here may
take place with wave vector Q=(0, ) (leading to a stripe
phase), instead of (2kp, ) (checkerboard). The stripe insta-
bility becomes preferable due to a frustration of the nearest-
neighbor interaction.’® Similarly in some cuprates a checker-
board pattern is observed instead of stripes or nematic order
(Ref. 70 and references therein).

In summary, we have studied in detail a toy model which
shows a very rich phase diagram and is a playground for
many phases which are sought after by the community of
correlated fermions. We have demonstrated within this
model the fundamentally different properties of the Fermi
surface that lead to crystallization and a Fermi-surface-
modifying transition. We must add that while our analysis
shows the presence of a metanematic transition, it is expo-
nentially small in the interaction strength, and therefore pre-
sents a formidable task at the moment to measure it experi-
mentally. At larger interactions of course, the perturbation
theory needs further supplementary work by treating both the
metanematic transition and the density-wave instability on
the same footing with, e.g., FLEX or with strong-coupling
techniques such as FRG. We hope that this work will stimu-
late more studies in this direction, both experimentally and
theoretically.
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APPENDIX: DERIVATION OF THE FREE-ENERGY
EXPANSION NEAR THE QUANTUM CRITICAL
END POINT

In this appendix, we derive the expansion [Eq. (19)] from
the free-energy expression Eq. (18) at T=0. While the energy
itself is a continuous function, the presence of van Hove
singularities in the density of states leads to logarithmic di-
vergences in derivatives. The goal is as follows, following
the spirit of Landau: to expand the free energy near the van
Hove energies to obtain the leading-order logarithmic terms,
and then by using phenomenological arguments in perform-
ing the rest of the calculations and adding the different terms
while keeping the correct physics, we obtain the expansion
Eq. (19) in the main text.

The kinetic energy can be written as (we measure energies
in units of 7))

F —fdz—k (kK)nk)=g-2( (A1
(Fo)= (277)250 n(k) =g = 2(x = xp)f, )

where
S
) en?

g £ (k)n(k),

d’k
f:J @cos kyn(k). (A2)

Some elementary manipulations transform the potential en-
ergy into the form

2 2
=7 [ 5 [ costanort - nti )

=—Vf. (A3)

We now define the normal density of states

d’k
v(§)=2m J Wété— &(k)] (A4)

and a weighted density of states

2
(€)= 27TJ %cos ko[- E(K)]. (AS)

This allows us to write our integrals as

0
o= Lano,
A £T

0
r=| e, (A6)
_A2W

where —A is the bottom of the band. As we will be interested
in the derivative of the energy with respect to small changes
in the distribution function, the values of such energy inte-
grals at their lower limit is unimportant and will be ignored
in the next.

The density of states v(¢) has a logarithmic divergence at
the van Hove energies &, which is a result of the integra-
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tion around the saddle points at (*r,0) and (0, = 7). While
the energy of these two points coincides in the case 7, =z,
for the anisotropic model we study, they occur at two differ-
ent energies. For the case 7, <7 and less than half filling
(which is what we deal with in the present paper), the im-
portant points are (0, = ). This gives

v(§) = —In(§- &) (A7)
and similarly as cos k,=—1 at these points,
(&) < In(§ - &p)- (A8B)

Taking into account that the van Hove energy is proportional
to the parameter x, it transforms the leading logarithmic
terms into

g = x* In|x| + regular terms,
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f o x In|x| + regular terms. (A9)
At this stage, while the regular terms are subleading and thus
unimportant for small enough x, a little care must be taken
with them in order to obtain the correct physical behavior. In
particular, the Kinetic energy g—2(x—x,)f while showing the
above nonanalytic behavior as x — 0 must also have a mini-
mum at x=x,. The simplest addition of an x> term ensures
this, giving

(Fo) ~ x2{1n|x| - %] — 2x[x — x¢]In|x]. (A10)

As the potential energy is proportional to f2, one must here
also consider the constant term in f~ c+x In|x|, which gives
the expansion Eq. (19) in the main text.
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